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We describe a new class of magnetic confinement device, with the magnetic axis in the shape of a

knot. We call such devices “knotatrons.” An example is given that has a large volume filled with

magnetic surfaces, with significant rotational-transform, and with the magnetic field produced

entirely by external circular coils. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4863844]

The principle of magnetically confining a plasma

exploits the fact that the motion of charged particles in a

strong magnetic field consists of a free-streaming motion

parallel to the field combined with a small, perpendicular

gyration. In a uniform field in cylindrical geometry, for

example, the particles are well confined in the perpendicular

direction: in the absence of electric fields and magnetic field

inhomogeneities, the perpendicular loss of particles is due

solely to collisions. However, a finite-length cylinder is not

closed. To prevent so-called “end-losses,” modern experi-

ments, such as ITER1 and W7X2 presently under construc-

tion, join the ends of the cylinder and thereby construct a

topological torus.

The simplest toroidal configuration has each magnetic

fieldline making a circle about a given rotational axis of

symmetry, e.g., the Z axis, where ðR;/; ZÞ are the usual cy-

lindrical coordinates. Such a configuration, however, cannot

support a plasma. Bending the magnetic field into a torus

necessarily compresses the field on the inside of the torus.

The vertical drift of particles caused by the inhomogeneity in

the field strength produces an electric field, which in turn

results in loss of confinement. To cancel the particle drifts, it

is necessary that the magnetic fieldlines rotate the short way

around the torus, the poloidal direction, while they rotate the

long way around, the toroidal direction. The average pitch of

this rotation is measured by the rotational-transform, defined

as average number of poloidal rotations per toroidal rotation,

i- � Dh=D/ as D/!1, where h measures the angle around

the magnetic axis, which may be defined as follows.

Consider a magnetic field with at least one magnetic

flux-surface, defined as a toroidal surface to which the field

is everywhere tangential. Assuming a strong toroidal compo-

nent of the field, so that B � /̂ > 0, we may take the / ¼ 0

plane as a Poincar�e section. Because r � B ¼ 0, the area of

the Poincar�e section bounded by the flux-surface is mapped

to itself by the return map, which is defined by following

along a fieldline around the machine back to the initial

Poincar�e section (or, if there is a q-fold symmetry in /, its

symmetric equivalent). The Brouwer fixed-point theorem3

applies: there must be one (in fact, at least one) point on this

area which is mapped to itself. The fieldline passing through

this point is called the magnetic axis and closes upon itself

after just one turn.

At the most primitive level, a magnetic confinement de-

vice must have a large volume of space occupied by mag-

netic fieldlines that wrap around on closed, toroidal surfaces.

The tokamak class of toroidal confinement device is

rotationally symmetric. (Realistically, however, there will

always be some “toroidal ripple” due to the finite number of

external current coils that produce the required magnetic

field.) In the axisymmetric case, the only possible way to

produce a poloidal magnetic field needed for rotational-

transform is to induce or drive a toroidal current in the

plasma itself. Tokamak plasmas are, consequently, inher-

ently prone to disruptions: anything that leads to a sufficient

kinking or displacement of the plasma current can break the

magnetic “bottle” confining the plasma.

Axisymmetry does provide some important advantages:

toroidal magnetic fields are analogous with 1 1
2
-dimensional

Hamiltonian dynamical systems,4 and the rotational symme-

try guarantees that space is filled by magnetic surfaces, i.e.,

that the magnetic field is integrable. The particle trajectories

are also governed by a Hamiltonian,5 and the rotational sym-

metry means that the particle trajectories possess certain

invariants so that particle transport is reduced.

There are methods other than driving a toroidal current

by which a rotational-transform can be produced. For exam-

ple, if the configuration is smoothly deformed to create a

non-planar magnetic axis, which of course must destroy the

rotational symmetry, the nontrivial torsion of the axis creates

a rotational-transform.6,7 This is the approach adopted by

many8 important examples of the stellarator class,9 in which

a magnetic field with non-zero rotational-transform is pro-

duced by currents external to the plasma. (This definition

includes torsatrons,10 heliotrons,11 and heliacs,12 all of which

refer to a particular arrangement of the external currents and

which are hereafter referred to as conventional stellarators.)

The confining magnetic field in stellarators does not depend

on the plasma current, and stellarators are thus far more sta-

ble than tokamaks.

To construct a set of external currents that provide vac-

uum magnetic surfaces with non-zero rotational-transform

is, however, easier said than done. The lack of a continuous

symmetry means that there will not, in general, be a nested

family of flux-surfaces. Whenever there is a resonance

between the geometry of the configuration and fieldlines

with rational rotational-transform, i- ¼ q=p for integers p and

q, a magnetic island will form at the resonant surface. Thea)Electronic mail: shudson@pppl.gov
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size of the island depends on the strength of the geometrical

resonance and the shear. In a large magnetic island there is a

volume of “elliptic” flux-surfaces with fieldlines that rotate

about a stable periodic orbit. A (p, q) periodic orbit is defined

here as a fieldline that closes upon itself after completing q
poloidal transits and p toroidal transits. When nearby islands

are sufficiently large so as to overlap, irregular fieldlines

emerge, which wander seemingly randomly over a volume.

The existence of such chaotic volumes degrades

confinement.

The challenge of stellarator design is, in part, to con-

struct coil configurations that either avoid the resonances, by

tailoring the configuration so that no strongly resonant,

rational surfaces are present, or to ensure that strength of the

geometrical resonance is sufficiently small so that the islands

are negligible. This must be achieved by geometrical shap-

ing. Magnetic islands also appear in tokamaks, but rather

than being caused by geometrical resonances they result

from resistive plasma instabilities associated with unstable

pressure and current profiles and are usually called tearing

modes.13

Breaking the rotational symmetry breaks the associated

invariants of the particle motions. This introduces a variety

of additional transport mechanisms by which particles may

be lost. Historically, this has put stellarators at a disadvant-

age as compared to tokamaks.14

However, the lack of axisymmetry does not mean that

stellarators cannot have a sufficiently large volume occupied

by flux-surfaces. By careful geometrical design, both the

vacuum field15 and finite-pressure equilibria16 in strongly

non-axisymmetric stellarators can be made arbitrarily close

to integrable. Similarly, the lack of axisymmetry does not

mean that stellarators cannot have good particle trajectories,

and modern stellarator designs are able to significantly

reduce the level of neoclassical transport.17

The stellarator class allows for three-dimensional shap-

ing and so a far greater variety of configurations is possible;

but the theoretical analyzes are more complicated, numerical

computation is more costly, and the configuration space of

stellarator design takes longer to explore. We stress this

point because the example knotatron configuration described

below has not been geometrically optimized to obtain opti-

mal plasma performance. This will be left for future work.

Joining the ends of a cylinder together to form a toka-

mak or conventional stellarator is not the only option for

closing the magnetic field in order to prevent end-losses. The

magnetic axes of rotationally symmetric tokamaks are

circles, and those of conventional stellarators are smoothly

deformable into circles. There is another class of plasma

magnetic confinement device that (i) is closed, in the sense

that magnetic fieldlines wrap around on flux-surfaces that

enclose a finite volume; (ii) has significant rotational-

transform, even in the absence of plasma current; and (iii)

that has a magnetic axis that is not smoothly deformable into

a circle. We may wonder if better plasma confinement can

be obtained if the plasma is, instead, tied into a knot.

Mathematically, a knot is defined an embedding,

K : S1,!S3, of a 1-sphere, i.e., a circle, into the 3-sphere.18,19

Or more simply, a knot is a closed, one-dimensional,

non-intersecting curve in three-dimensional space, R3. This

includes the trivial knot, the circle, which is also called the

unknot. Both knots and unknots share the topology of the

circle. Two knots, K and �K , are ambient isotopic if there

exists a continuous one-parameter family, ht, of homeomor-

phisms of S3 such that h0 is the identity map and h1 � K ¼ �K .

In other words, two knots are equivalent if there is a continu-

ous deformation of R3 that maps one knot into the other. A

knot may be distinguished from the unknot, as it is not possi-

ble to deform a knot into the unknot without the knot passing

through itself or it being cut. The theory of knots is relevant

to a wide range of topics, including the study of DNA dy-

namics20 and quantum field theory.21

A (p, q)-torus knot, where (p, q) is a pair of co-prime

integers, is a special kind of knot that lies on the surface of a

torus: it winds q times around the poloidal direction, and p
times around the toroidal direction. (The torus that the knot

winds around on need not have any particular symmetry, i.e.,

the torus may look like a conventional stellarator flux-sur-

face.) An example parametrization is

xðfÞ ¼ RðfÞcosðp fÞ;
yðfÞ ¼ RðfÞsinðp fÞ;
zðfÞ ¼ �r sinðq fÞ;

(1)

where RðfÞ ¼ R0 þ r cosðq fÞ, and R0 and r are constants.

Note that Rðfþ 2p=qÞ ¼ RðfÞ and zðfþ 2p=qÞ ¼ zðfÞ, so

there is a q-fold rotational symmetry around the Z axis. The

usual cylindrical angle, tan / ¼ y=x, is / ¼ p f. The sim-

plest, nontrivial example, which will be considered in the

following, is the (2, 3)-torus knot, which is also known as

the trefoil knot.

This article introduces a new type of plasma confine-

ment device—the knotatron—a device that has a magnetic

axis in the shape of a knot. A set of external coil currents

that provides the required magnetic field is constructed as

follows.

A reference curve, xðfÞ � xðfÞ iþ yðfÞ jþ zðfÞk, that

has the shape of a (p, q)-torus knot is chosen as a proxy mag-

netic axis. The unit tangent to this curve is t � _x=j _xj, where

the “dot” denotes derivative with respect to f.

A set of i¼ 1,…,N circular coils are positioned equally

spaced along this reference curve, so that the center of each

coil is located at xi � xðfiÞ, where fi ¼ 2pði� 1Þ=N. Each

coil is assumed to carry unit current and has radius a. The

magnetic field produced by each coil, Bi, is computed using

the Biot-Savart law. The initial orientation is such that the

i-th coil is described by

xðh; fiÞ ¼ xðfiÞ þ a cos h nþ a sin h b; (2)

where n � _t=j is the principal normal, j ¼ j_tj is the curva-

ture, and b � t� n is called the bi-normal. The set (t, n, b)

is called the Frenet-Serret frame. The torsion, s, measures

the speed of rotation of the bi-normal vector, _b ¼ �sn.

By symmetry, Bi is tangential to the reference curve at

the coil center, BiðxiÞ � ti ¼ 0; however, this initial orienta-

tion of the coils does not guarantee that the total magnetic

field, B ¼
P

i Bi, is tangential to the reference curve. To
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enforce the condition BðxiÞ � ti ¼ 0; 8xi, with a set of N cir-

cular coils centered at the xi, it is required to appropriately

adjust their orientations. This is a simple numerical task:

there are 2 degrees-of-freedom in the orientation of each

coil, and the condition BðxiÞ � ti ¼ 0; 8xi, represents a total

of 2 N constraints. A solution may be obtained iteratively.

With only a finite set of coils this algorithm cannot guarantee

that B(x)� t¼ 0 everywhere along the reference curve, and

so the magnetic axis of B will not exactly coincide with x(f);

but as N increases the agreement improves.

Shown in Fig. 1 is an illustration of the resulting coil

configuration for a (2, 3) torus-knot, where we have chosen

R0¼ 2, r¼ 1, and a¼ 2/3, in units of meters, and N¼ 36.

Shown in Fig. 2 is a Poincar�e plot of the resulting magnetic

field on the / ¼ 0 plane, and Fig. 3 shows the rotational-

transform. The / ¼ 0 plane cuts a (p, q)-torus knotatron p
times; and the magnetic axis is 2pp=q periodic in /, rather

than the usual 2p=q, in a device with a q-fold symmetry. The

rotational-transform on axis is i- � 0:261. The colored sur-

face shown in Fig. 1 is a flux-surface. The color indicates

jBj, with blue showing areas of weak magnetic field and red

showing strong. The intersection of this surface with the

Poincar�e section is shown as the thick line on Fig. 2. There is

a large volume of space, about 5.08 m3, filled with flux-

surfaces with a significant rotational-transform.

The first conceptual obstacle to overcome in the investi-

gation into whether knotatrons may provide advantages for

confining plasmas is to overcome the perception that such

devices may be awkward or even impossible to construct. To

address this concern, rather than adjusting the coil geometry

in order to shape the vacuum flux-surfaces to improve con-

finement, we have instead sought to construct a simple set of

coils that do not intersect—the minimum coil-coil separation

is 32 cm—and that produces the required magnetic axis. We

have chosen a moderate number of coils, 12 coils per period,

to illustrate that knotatrons should be easy, at least possible,

to engineer; however, the fewer coils the greater the toroidal

ripple, and some toroidal ripple is clearly seen in Fig. 1. (The

surfaces closer to the magnetic axis are less rippled.)

This coil configuration is unlikely to be “flexible,” in the

sense that it may not be possible to construct many different

magnetic configurations by simply varying the currents.

Additional helical windings and/or vertical field coils, such

as those used in conventional stellarators, will probably be

required for an attractive experimental design.

It is natural to ask, what advantages do knotatrons pro-

vide? Common sense would suggest that the construction

and operation of knotatrons would be far more complex than

that of conventional stellarators, but this is not necessarily

the case. Modern experiments are already quite complex,

and there is no obvious reason why an experimental knota-

tron would need to be as compact as the example shown in

Fig. 1.

The knotatron example presented here could perhaps be

compared to an early stellarator design, e.g., the model-A

stellarator, which had the magnetic axis in the shape of a fig-

ure-8.9 The early stellarators are not attractive experimental

designs by today’s standards. To thoroughly investigate the

potential of knotatrons, and thus determine what knotatrons

may have to offer, it is required to perform extensive equilib-

rium, stability and transport studies, and to employ optimiza-

tion algorithms to find an attractive design, as is required for

all modern devices.

The rotational-transform is produced by the torsion,

which measures the extent to which the magnetic axis devi-

ates from lying in a plane. As non-trivial knots cannot lie on

FIG. 1. A trefoil-knotatron: 36 circular coils, each with unit current, produce

a magnetic field with an axis in the shape of a trefoil knot. The color indi-

cates jBj on a flux surface.

FIG. 2. Poincar�e plot on the / ¼ 0 plane.

FIG. 3. Rotational-transform, i-, plotted against R.
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a plane, one may speculate that knotatrons are capable of

producing greater rotational-transform than a conventional

stellarator, but this is unclear. The Fary-Milnor theorem22

states that three-dimensional smooth curves with small total

curvature must be unknotted: if
Þ

jðfÞ df � 4p, then the

curve is an unknot; but it does not follow from this that

curves with large total curvature must be knots.

Just as there is a much greater variety of conventional

stellarators than tokamaks, there is a much greater variety of

knotatrons than conventional stellarators. There is a seem-

ingly infinite variety of knots: not all knots are torus knots,

there is, for example, also the class of Lissajous knots;23 and

given two non-trivial knots an additional composite knot

may be constructed by cutting each knot and joining the

ends. Within each class of knot family it is possible to vary

the geometry of the configuration to improve the confine-

ment. This begs the question: is there a class of knot that pro-

vides optimal confinement? The curvature and torsion of the

magnetic fieldlines are important for magnetohydrodynamic

stability, and it would seem that knotatrons can provide a

greater variety of curvatures and torsions than tokamaks or

conventional stellarators.

As both tokamaks and conventional stellarators have

magnetic axes that are ambient isotopic to the unknot, these

devices may be called unknotatrons. As the confining mag-

netic field in a knotatron is produced by external currents,

and the rotational-transform is produced by a non-planar

magnetic axis, knotatrons are a new example of the stellara-

tor class.

To our knowledge, this is first time that a magnetic con-

finement device in the shape of a knot has been considered.

However, knotatrons have already been realized experimen-

tally in a sense, albeit perhaps unintentionally and as yet

unrecognized as knotted confinement regions. A (p, q) peri-

odic orbit, for (p, q) relatively prime, is a torus-knot. The

region of elliptic flux-surfaces in a large magnetic island,

with fieldlines that rotate about a stable periodic orbit, forms

a confinement region ambient isotopic to that of a knotatron.

Closely related to the theory of knots is the theory of

links: given two closed curves, x(f) and yðf0Þ, the number of

times one links the other is called the linking number and is

given24,25 by

� 1

4p

þ þ
r

jrj3
� dy � dx; (3)

where rðf; f0Þ � yðf0Þ � xðfÞ, and dx and dy are infinitesimal

line segments along each curves. Generalizing this to contin-

uum of curves in a volume we obtain the helicity

integral24,25

H � � 1

4p

þ þ
r

jrj3
� BðyÞ � BðxÞ � d3y � d3x; (4)

which, on using the vector potential in the Coulomb

gauge,24,25 reduces to H ¼
Ð

A � B � dv.

The helicity integral has received a lot of attention in

plasma physics: the principle of Taylor relaxation26 has been

successful in the predicting the behavior of reversed field

pinch (RFP) experiments by postulating that weakly resistive

plasmas will evolve to minimize the total energy, thermal-

þmagnetic, of the plasma under the constraint of conserved

helicity. Seen as the generalization of the Gauss linking inte-

gral, the constraint of conserved helicity is equivalent to the

constraint of constant “linked-ness.” Recently,27 the Taylor

relaxation model has been extended to explain the experi-

mentally observed self-organization of the RFP into helical

states,28 but the physical mechanism of Taylor relaxation

remains a topic of ongoing investigation.29–31
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